

Via Franchetti, 4 - 37138 Verona - Tel. 045 572697 - E-Mail: info@poroton.it

Verona, 30/03/2018

Il Tecnico Calcolatore

RAPPORTO DI CALCOLO

Richiedente: T2D S.p.A.

Via A. Canobbio, 34 – 37132 Verona – Stabilimento di produzione: Toppetti 2 – Todi (PG)

Oggetto: Determinazione delle caratteristiche termiche dinamiche e stazionarie, e verifiche igrometriche di una

struttura verticale opaca realizzata con blocchi POROTON® denominati "P800 30x25x25",

spessore muratura 30 cm

Rapporto N.: 1803-A0S005 Codice Prodotto 792

RIFERIMENTI NORMATIVI

UNI EN ISO 13786 "Prestazione termica dei componenti per edilizia – Caratteristiche termiche dinamiche – Metodi di calcolo"

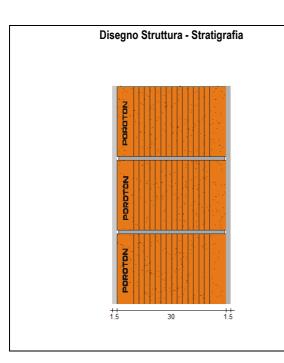
- UNI EN ISO 6946 "Componenti ed elementi per edilizia Resistenza termica e trasmittanza termica Metodo di calcolo"
- UNI EN 1745 "Muratura e prodotti per muratura Metodi per determinare le proprietà termiche"
- UNI EN ISO 10456 "Materiali e prodotti per edilizia Proprietà igrometriche Valori tabulati di progetto e procedimenti per la determinazione dei valori termici dichiarati e di progetto"
- UNI EN 13788 "Prestazione igrometrica dei componenti e degli elementi per edilizia Temperatura superficiale interna per evitare l'umidità superficiale critica e la condensazione interstiziale – Metodi di calcolo"
- UNI 10349-1 "Riscaldamento e raffrescamento degli edifici Dati climatici Parte 1: Medie mensili per la valutazione della prestazione termoenergetica dell'edificio e metodi per ripartire l'irradianza solare nella frazione diretta e diffusa e per calcolare l'irradianza solare su di una superficie inclinata"
- D.M. 26/06/2015 "Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici"

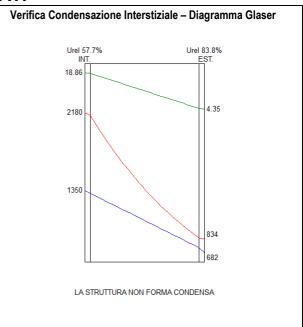
METODO DI CALCOLO

- I calcoli sono stati eseguiti utilizzando valori di conduttività termica dei materiali allo stato asciutto.
- Il calcolo delle caratteristiche termiche dinamiche è stato eseguito in base alla UNI EN ISO 13786 considerando un periodo di variazione termica pari a 24 ore.
- La resistenza termica calcolata è quella corrispondente al "limite inferiore", come definito nel paragrafo 6.2.4 della norma UNI EN ISO 6946. In particolare, per la muratura si è tenuto conto della presenza della malta di allettamento fra i corsi di elementi (e tra elemento ed elemento), considerando una conduttività termica equivalente, e quindi una resistenza termica equivalente. Il calcolo della resistenza termica complessiva della parete stratificata è stato quindi eseguito sommando le resistenze termiche dei diversi strati.
- I valori di capacità termica specifica (calore specifico "cp") ed i valori del fattore di resistenza al vapore d'acqua "μ" (e quindi della permeabilità al vapore "δ") sono stati dedotti dalla UNI EN ISO 10456 ed UNI EN 1745.
- Le verifiche igrometriche (verifica condensazione interstiziale e verifica del rischio muffa) sono state condotte in conformità alla UNI EN 13788, considerando come riferimento i dati climatici della UNI 10349-1 per la località "MILANO" (Zona Climatica E).

Rapporto N. 1803-A0S005 Pagina 1/2

Via Franchetti, 4 - 37138 Verona - Tel. 045 572697 - E-Mail: info@poroton.it


CARATTERISTICHE TERMOIGROMETRICHE E GEOMETRICHE DELLA STRUTTURA VERTICALE OPACA


Elemento costruttivo (descrizione)	Cond. [λ] (W/mK)	C. Spec. (J/kgK)	Massa Vol. (kg/m³)	ð·10-¹² (kg/msPa)	Spess. (cm)
Intonaco Interno	0.530	1000	1500.0	18.0	1.50
Muratura P800 30x25x25 (*)	0.186	1000	890.0	20.0	30.00
Intonaco esterno	0.820	1000	1800.0	10.0	1.50
Spessore Totale Struttura (cm)					33.00

Resist. Superf. Interna [Rsi] (m²K/W): 0.13 - Resist. Superf. Esterna [Rse] (m²K/W): 0.04

(*) Muratura comprensiva di giunti orizzontali e verticali di malta di spessore 7 mm, interruzione 2 cm Caratteristiche malta ed intonaci secondo UNI EN 1745, Prospetto A.12: malta con massa volumica=1800 kg/m³, conduttività λ= 0,82 W/mK

RISULTATI

Il Tecnico Calcolatore

VALORI IN REGIME STAZIONARIO				
Massa totale [Mtot]	316.5	kg/m²		
Massa superficiale [Ms]	267.0	kg/m²		
Resistenza termica totale [R _{tot}]	1.829	m²K/W		
Conduttanza [C]	0.603	W/m²K		
Trasmittanza [U]	0.547	W/m²K		

VALORI IN REGIME VARIABILE (periodo 24 ore)				
Fattore di attenuazione [fa]	0.137	adim.		
Sfasamento [S]	14.55	ore		
Trasmittanza termica periodica [Yie]	0.075	W/m²K		

VERIFICA RISCHIO MUFFA				
Località: Milano (Zona Climatica E)	Mese critico Gennaio	f _{Rsi,lim} 0.676	f _{Rsi struttura} 0.929	T muffa (°C) 14.8
Esito verifica:	NESSUN RISCHIO MUFFA			

Rapporto N. 1803-A0S005 Pagina 2/2

Via Franchetti, 4 – 37138 Verona – Tel. 045 572697 – E-Mail: info@poroton.it

Verona, 30/03/2018

Il Tecnico Calcolatore

RAPPORTO DI CALCOLO

Richiedente: T2D S.p.A.

Via A. Canobbio, 34 – 37132 Verona – Stabilimento di produzione: Toppetti 2 – Todi (PG)

Oggetto: Determinazione delle caratteristiche termiche dinamiche e stazionarie, e verifiche igrometriche di una

struttura verticale opaca realizzata con blocchi POROTON® denominati "P800 30x25x25",

spessore muratura 25 cm

Rapporto N.: 1803-A0S006 Codice Prodotto 792

RIFERIMENTI NORMATIVI

UNI EN ISO 13786 "Prestazione termica dei componenti per edilizia – Caratteristiche termiche dinamiche – Metodi di calcolo"

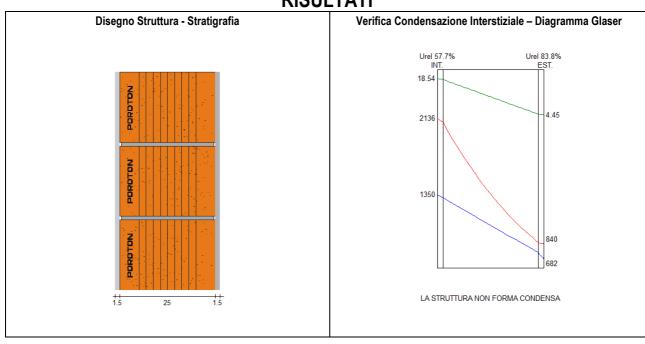
- UNI EN ISO 6946 "Componenti ed elementi per edilizia Resistenza termica e trasmittanza termica Metodo di calcolo"
- UNI EN 1745 "Muratura e prodotti per muratura Metodi per determinare le proprietà termiche"
- UNI EN ISO 10456 "Materiali e prodotti per edilizia Proprietà igrometriche Valori tabulati di progetto e procedimenti per la determinazione dei valori termici dichiarati e di progetto"
- UNI EN 13788 "Prestazione igrometrica dei componenti e degli elementi per edilizia Temperatura superficiale interna per evitare l'umidità superficiale critica e la condensazione interstiziale – Metodi di calcolo"
- UNI 10349-1 "Riscaldamento e raffrescamento degli edifici Dati climatici Parte 1: Medie mensili per la valutazione della prestazione termoenergetica dell'edificio e metodi per ripartire l'irradianza solare nella frazione diretta e diffusa e per calcolare l'irradianza solare su di una superficie inclinata"
- D.M. 26/06/2015 "Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici"

METODO DI CALCOLO

- I calcoli sono stati eseguiti utilizzando valori di conduttività termica dei materiali allo stato asciutto.
- Il calcolo delle caratteristiche termiche dinamiche è stato eseguito in base alla UNI EN ISO 13786 considerando un periodo di variazione termica pari a 24 ore.
- La resistenza termica calcolata è quella corrispondente al "limite inferiore", come definito nel paragrafo 6.2.4 della norma UNI EN ISO 6946. In particolare, per la muratura si è tenuto conto della presenza della malta di allettamento fra i corsi di elementi (e tra elemento ed elemento), considerando una conduttività termica equivalente, e quindi una resistenza termica equivalente. Il calcolo della resistenza termica complessiva della parete stratificata è stato quindi eseguito sommando le resistenze termiche dei diversi strati.
- I valori di capacità termica specifica (calore specifico "cp") ed i valori del fattore di resistenza al vapore d'acqua "μ" (e quindi della permeabilità al vapore "δ") sono stati dedotti dalla UNI EN ISO 10456 ed UNI EN 1745.
- Le verifiche igrometriche (verifica condensazione interstiziale e verifica del rischio muffa) sono state condotte in conformità alla UNI EN 13788,
 considerando come riferimento i dati climatici della UNI 10349-1 per la località "MILANO" (Zona Climatica E).

Rapporto N. 1803-A0S006 Pagina 1/2

Via Franchetti, 4 - 37138 Verona - Tel. 045 572697 - E-Mail: info@poroton.it


CARATTERISTICHE TERMOIGROMETRICHE E GEOMETRICHE DELLA STRUTTURA VERTICALE OPACA

Elemento costruttivo (descrizione)	Cond. [λ] (W/mK)	C. Spec. (J/kgK)	Massa Vol. (kg/m³)	ð·10-¹² (kg/msPa)	Spess. (cm)
Intonaco Interno	0.530	1000	1500.0	18.0	1.50
Muratura P800 30x25x25 (*)	0.207	1000	880.0	20.0	25.00
Intonaco esterno	0.820	1000	1800.0	10.0	1.50
Spessore Totale Struttura (cm)					28.00

Resist. Superf. Interna [Rsi] (m²K/W): 0.13 - Resist. Superf. Esterna [Rse] (m²K/W): 0.04

(*) Muratura comprensiva di giunti orizzontali e verticali di malta di spessore 7 mm, interruzione 2 cm Caratteristiche malta ed intonaci secondo UNI EN 1745, Prospetto A.12: malta con massa volumica=1800 kg/m³, conduttività λ= 0,82 W/mK

RISULTATI

VALORI IN REGIME STAZIONARIO				
Massa totale [Mtot]	269.5	kg/m²		
Massa superficiale [Ms]	220.0	kg/m²		
Resistenza termica totale [R _{tot}]	1.424	m²K/W		
Conduttanza [C]	0.797	W/m²K		
Trasmittanza [U]	0.702	W/m ² K		

VALORI IN REGIME VARIABILE (periodo 24 ore)				
Fattore di attenuazione [fa]	0.256	adim.		
Sfasamento [S]	11.36	ore		
Trasmittanza termica periodica [Yie]	0.180	W/m²K		

VERIFICA RISCHIO MUFFA				
Località: Milano (Zona Climatica E)	Mese critico Gennaio	f _{Rsi,lim} 0.676	f _{Rsi struttura} 0.909	T muffa (°C) 14.8
Esito verifica:	NESSUN RISCHIO MUFFA			

Il Tecnico Calcolatore

Rapporto N. 1803-A0S006 Pagina 2/2